Identification of a region of rat chromosome 1 that impairs the myogenic response and autoregulation of cerebral blood flow in fawn-hooded hypertensive rats.
نویسندگان
چکیده
This study examined the effects of transfer of a 2.4-Mbp region of rat chromosome 1 (RNO1) from Brown Norway (BN) into fawn-hooded hypertensive (FHH) rats on autoregulation (AR) of cerebral blood flow (CBF) and the myogenic response of middle cerebral arteries (MCAs). AR of CBF was poor in FHH and FHH.1(BN) AR(-) congenic strains that excluded the critical 2.4-Mbp region. In contrast, AR was restored in FHH.1(BN) AR(+) congenic strains that included this region. The diameter of MCAs of FHH rats increased from 140 ± 14 to 157 ± 18 μm when transmural pressure was increased from 40 to 140 mmHg, but it decreased from 137 ± 5 to 94 ± 7 μm in FHH.1(BN) AR(+) congenic strains. Transient occlusion of MCAs reduced CBF by 80% in all strains. However, the hyperemic response following ischemia was significantly greater in FHH and AR(-) rats than that seen in AR(+) congenic strains (AR(-), 173 ± 11% vs. AR(+), 124 ± 5%). Infarct size and edema formation were also significantly greater in an AR(-) strain (38.6 ± 2.6 and 12.1 ± 2%) than in AR(+) congenic strains (27.6 ± 1.8 and 6.5 ± 0.9%). These results indicate that there is a gene in the 2.4-Mbp region of RNO1 that alters the development of myogenic tone in cerebral arteries. Transfer of this region from BN to FHH rats restores AR of CBF and vascular reactivity and reduces cerebral injury after transient occlusion and reperfusion of the MCA.
منابع مشابه
Altered renal hemodynamics and impaired myogenic responses in the fawn-hooded rat.
The present study examined whether an abnormality in the myogenic response of renal arterioles that impairs autoregulation of renal blood flow (RBF) and glomerular capillary pressure (PGC) contributes to the development of renal damage in fawn-hooded hypertensive (FHH) rats. Autoregulation of whole kidney, cortical, and medullary blood flow and PGC were compared in young (12 wk old) FHH and faw...
متن کاملElevated K+ channel activity opposes vasoconstrictor response to serotonin in cerebral arteries of the Fawn Hooded Hypertensive rat
Previous studies suggest that middle cerebral arteries (MCAs) of Fawn Hooded Hypertensive (FHH) rats exhibit impaired myogenic response and introgression of a small region of Brown Norway chromosome 1 containing 15 genes restored the response in FHH.1BN congenic rat. The impaired myogenic response in FHH rats is associated with an increase in the activity of the large conductance potassium (BK)...
متن کاملIdentification of a QTL on chromosome 1 for impaired autoregulation of RBF in fawn-hooded hypertensive rats.
The present study evaluated whether the impairment in autoregulation of renal blood flow (RBF) in the fawn-hooded Hypertensive (FHH) rat colocalizes with the Rf-1 region on chromosome 1 that has been previously linked to the development of proteinuria in this strain. Autoregulation of RBF was measured in FHH and a consomic strain (FHH.1(BN)) in which chromosome 1 from the Brown-Norway (BN) rat ...
متن کاملZinc-Finger Nuclease Knockout of Dual-Specificity Protein Phosphatase-5 Enhances the Myogenic Response and Autoregulation of Cerebral Blood Flow in FHH.1BN Rats
We recently reported that the myogenic responses of the renal afferent arteriole (Af-Art) and middle cerebral artery (MCA) and autoregulation of renal and cerebral blood flow (RBF and CBF) were impaired in Fawn Hooded hypertensive (FHH) rats and were restored in a FHH.1BN congenic strain in which a small segment of chromosome 1 from the Brown Norway (BN) containing 15 genes including dual-speci...
متن کاملEnhanced large conductance K+ channel activity contributes to the impaired myogenic response in the cerebral vasculature of Fawn Hooded Hypertensive rats.
Recent studies have indicated that the myogenic response (MR) in cerebral arteries is impaired in Fawn Hooded Hypertensive (FHH) rats and that transfer of a 2.4 megabase pair region of chromosome 1 (RNO1) containing 15 genes from the Brown Norway rat into the FHH genetic background restores MR in a FHH.1(BN) congenic strain. However, the mechanisms involved remain to be determined. The present ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 304 2 شماره
صفحات -
تاریخ انتشار 2013